What is...

ChIP-SEQ ATAC-SEQ BISULFITE-SEQ HiC-SEQ

RNA-SEQ smRNA-SEQ PRO-SEQ CLIP-SEQ

Jen Grenier Director, TREx Facility

TR Ex

Announcements

• New and Improved Project Submission Form Available on our web site

New service: ATACseq

Assay for Transposase-Accessible Chromatin by sequencing Identify promoters, enhancers, motifs enriched in open chromatin expressed genes, 'poised' genes (vs RNAseq) Researcher provides intact nuclei (preserving native state) Soft launch in January Interested? Contact us at *trex_info@cornell.edu*,

or come to our next Tech Talk for more information!

Massively parallel, high-throughput DNA sequencing

Spatially separated, clonally amplified DNA templates on a flow cell

Illumina platform:

- library is captured by probes on the surface of the flow cell
- captured molecules form colonies with bridge amplification
- sequencing by synthesis generates fluorescent signal
- camera/optics reads signal for each base, each cycle (base)
- software converts images into text file (fastq format)
- up to 4 reads (with different primers) per cluster, per run

Illumina video

What is an Illumina library?

TR Ex

What is Gene Regulation?

A wide range of mechanisms that control the production of specific gene products

- What genes are expressed under different conditions? expression profiling
- How is transcription regulated? chromatin state, transcription factor occupancy, DNA methylation
- What about post-transcriptional regulation? RNA binding proteins, microRNA regulation

How can we use NGS to study gene regulation?

TR

EX

What is RNA-seq?

RNA Enrichment	Applications:	gene expression profiling transcript annotation/assembly pathogen identification variant discovery/identification
Fragmentation	Input:	total RNA
	Enrichment:	polyA ⁺ or rRNA-depletion
cDNA	Reads:	map to exons
Adapter ligation	Analysis:	differential gene expression transcript assembly/annotation
PCR amplification	Variations:	3' RNA-seq, targeted RNA-seq

What is RNA-seq?

What is ChIP-seq?

Cells/tissue Crosslink DNA+Ptn Lyse/sonicate Immunoprecipitate Reverse crosslink Adapter ligation **PCR** amplification

Applications: chromatin mark distribution transcription factor occupancy DNA binding protein sites cells/tissue (native gDNA) Input: **Enrichment**: antibody immunoprecipitation **Reads**: map to small intervals ('peaks') Analysis: peak identification differential peak representation motif enrichment

Variations: ChIP-exo, CUT&RUN, CUT&Tag

What is ChIP-seq?

What is Bisulfite-seq?

	Applications:	identify methylated CpG
gDNA	Input:	gDNA
Fragment	Enrichment:	optional (RRBS, targeted)
Me-Adapter ligation	Reads:	C (reference)→T (read) indicates unmethylated-C
Bisulfite conversion	Analysis:	location, frequency of me-C differential methylation
PCR amplfication	Variations:	RRBS, targeted, TAB-seq

TR Ex

What is Bisulfite-seq?

What is ATAC-seq?

Cells/tissue Permeabilize nuclei Tagment PCR amplification

Applications :	chromatin accessibility assay enhancer identification 'poised' genes (open but off)
Input:	cells/tissue (native nuclei)
Enrichment:	accessible chromatin
Reads:	map to small intervals ('peaks')
Analysis:	peak identification differential peak representation motif enrichment

Variations:

What is CLIP-seq?

Cells/tissue Crosslink **RNA**+Ptn Lyse cells Immunoprecipitate Ligate adapters (x2) **cDNA**

PCR amplification

Applications: identify RBP binding sites cells/tissue (native RNA) Input: **Enrichment**: antibody immunoprecipitation Reads: map to mRNAs (binding sites) Analysis: **RBP** binding site identification differential binding RNA motif enrichment Variations: RIP-seq, PAR-CLIP, ...

What is PRO-seq?

Applications: identify nacent RNA transcripts Cells Input: cells (native nuclei) **Enrichment**: Biotin (run-on incorporation) Permeabilize nuclei Reads: map to exons, promoters, Run-on (bio-dXTP) enhancers (eRNAs) Analysis: gene expression profiling, **Biotin capture** enhancer identification, pol II localization (pausing), Ligate adapters (x2) transcription rate,... **cDNA** Variations: GRO-seq, ChRO-seq, PRO-cap,... **PCR** amplification

What is PRO-seq?

What is HiC-seq?

Applications: chromatin interaction (looping) Cells/tissue genome configuration cells/tissue (native gDNA) Input: Crosslink **gDNA Enrichment**: **Biotin (proximity ligation)** Digest **Reads**: map to genome Analysis: paired-end read positions = **Biotin end-label** proximity sites **Proximity ligation** Variations: C3, ChIA-PET, Hi-cap Shear, Biotin capture Adapter ligation, PCR

TR Ex

What is HiC-seq?

How can we use NGS to study gene regulation?

TR

EX

Important Considerations

Experimental Design

Controls	relative quantification
Replicates	statistical power

Quality Control Checks

Input material	RNA integrity, Ab quality,
Library	size distribution, concentration
Sequencing data	base quality, mapping quality,

Transcriptional Regulation and Expression Facility trex_info@cornell.edu

Faraz Ahmed Christine Butler Ann Tate

Sign up for our List-Serv!

*Send an email message to

TREX-GENEREG-L-request@cornell.edu

with "join" as the subject