Having high quality RNA is the MOST important thing you can do to insure the success of your experiment!
Introduction to RNAseq

- Sample Requirements
- Applications
- Methods

TREX
Why do RNASeq?

- Gene Expression Profiling
 - Reference (Annotated)
 - De Novo (discovery)
- Variant Analysis or Discovery
- Pathogen ID
TREX

Applications

Introduction to RNAseq

Sample Requirements

Methods
Methods

- What are my research goals?
- What is my RNA quality?
- How many samples do I have?
- How much RNA do I have?
Methods

- What are my research goals?
- What is my RNA quality?
- How many samples do I have?
- How much RNA do I have?
Methods

- What are my research goals?
- What is my RNA quality?
- How many samples do I have?
- How much RNA do I have?
Why Choose Lexogen 3'RNA Seq?

- High Throughput: BRC Service requires >32 samples
- Experimental design tolerant of dropouts
- The information you are interested in is at the 3' end of the RNA strand
- Tolerant of:
 - Input concentration diversity
 - RNA quality diversity
3' method (LEXO)

Step 1: 1st strand synthesis of polyA tailed RNA from total RNA using oligo dT primers

```
5' mRNA
  ^  ^
  3'   AAAAAA 3'
```

Step 2: Degradation of the RNA template

```
5' 3'
  5' 3'
```

Step 3: 2nd strand synthesis with random primers containing 5' Illumina-compatible linker sequences

```
3' 3'
  5' Random primer
  3'
```

Step 4: Amplification using random primers that add barcodes and cluster generation sequences

```
  3' 3'
  5'
```

Step 5: Sequencing
Why Choose Truseq RNA

Flexible:
- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
 - Input Concentration: 1000-100ng
 - RNA Integrity: Intact OR Degraded
 - Sample Number: <384

Directional Or Non-Directional

Highly Supported
Why Choose Truseq RNA

Flexible:
- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- RNA Integrity: Intact OR Degraded
- Sample Number: <384

Directional Or Non-Directional

Highly Supported
Why Choose Truseq RNA

Flexible:
- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- RNA Integrity: Intact OR Degraded
- Sample Number: <384

Directional Or Non-Directional

Highly Supported
Why choose NEB Next Ultra II

Flexible:
- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- RNA Integrity: Intact OR Degraded
- Sample Number: <384

Fully Supported

Directional Or Non-Directional

Modular
What is Poly A Selection?

Keep any RNA fragment with a Poly A stretch in it

Discard everything else
 Ribosomal RNA
 Some lncRNA
 Other Housekeeping RNAs
 Degraded RNA - only keep the pieces with Poly A tails
What is Poly A Selection?

Keep any RNA fragment with a Poly A stretch in it

Discard everything else
 Ribosomal RNA
 Some lncRNA
 Other Housekeeping RNAs
 Degraded RNA - only keep the pieces with Poly A tails
What is Poly A Selection?

Keep any RNA fragment with a Poly A stretch in it

Discard everything else
 Ribosomal RNA
 Some lncRNA
 Other Housekeeping RNAs
 Degraded RNA - only keep the pieces with Poly A tails
What is Poly A Selection?

Keep any RNA fragment with a Poly A stretch in it

Discard everything else
 Ribosomal RNA
 Some lncRNA
 Other Housekeeping RNAs
 Degraded RNA - only keep
 the pieces with Poly A tails
What is Poly A Selection?

Keep any RNA fragment with a Poly A stretch in it

Discard everything else
- Ribosomal RNA
- Some lncRNA
- Other Housekeeping RNAs
- Degraded RNA - only keep the pieces with Poly A tails
Why Choose Poly A?
Why Choose Poly A?

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA
Why Choose Poly A?

• If your research question allows for Poly A selection
 • Bacteria don't have a Poly A tail
 • If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA

• If your RNA is intact:
 • RQN is >7
Why Choose Poly A?

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA
- If your RNA is intact:
 - RQN is >7
Why Choose Poly A?

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA
- If your RNA is intact:
 - RQN is >7
- If you don't care about 3' bias

RQN 10
What is Ribosomal Depletion

- Total RNA contains greater than 90% rRNA (red).
- Binding of ssDNA Probes
- Single-stranded DNA probes hybridize specifically to rRNA molecules.
- rRNA Degradation by Ribonuclease H (RNase H) Enzyme
- RNase H degrades the hybridized rRNA (rRNA).
- Probe Degradation by DNase I Enzyme & Clean Up
- DNase I degrades the DNA probes.
- rRNA-depleted RNA
- Non-rRNA species (blue) are enriched.
Total RNA contains greater than 80% rRNA (red).

Binding of ssDNA Probes

Single-stranded DNA probes hybridize specifically to rRNA molecules.

rRNA Degradation by Ribonuclease H (RNase H) Enzyme

RNase H degrades the hybridized RNA (rRNA).

Probe Degradation by DNase I Enzyme & Clean Up

DNase I degrades the DNA probes.

rRNA-depleted RNA

Non-rRNA species (blue) are enriched.
ssDNA probes are organism specific.
ssDNA probes are organism specific

ONLY the hybridized RNA is degraded
ssDNA probes are organism specific

ONLY the hybridized RNA is degraded
ssDNA probes are organism specific

ONLY the hybridized RNA is degraded

Housekeeping RNAs
Why Choose Ribosomal Depletion?
Why Choose Ribosomal Depletion?

If your RNA is degraded: RQN <7
Why Choose Ribosomal Depletion?

If your RNA is degraded: RQN <7
Why Choose Ribosomal Depletion?

If your RNA is degraded: RQN <7
If your organism is not compatible with Poly A
Why Choose Ribosomal Depletion?

If your RNA is degraded: RQN <7
If your organism is not compatible with Poly A
If you are looking for RNA's that don't have a poly A tail
What is the difference between Directional and Nondirectional?
Prior to PCR amplification, the dUTP-marked strand is selectively degraded by Uracil-DNA-Glycosylase (UDG). The remaining strand is amplified to generate a cDNA library suitable for sequencing.
What is the difference between Directional and Nondirectional?
What is the difference between Directional and Nondirectional?

Why choose Directional?
- More information
- Which strand your RNA is being transcribed from
- More accurate count of genes in differential expression analysis
What is the difference between Directional and Nondirectional?

Why choose Directional?
- More information
 - Which strand your RNA is being transcribed from
- More accurate count of genes in differential expression analysis

Why choose Nondirectional?
- If you have <10ng of total RNA
What is the difference between Directional and Nondirectional?

Why choose Directional?
- More information
 - Which strand your RNA is being transcribed from
- More accurate count of genes in differential expression analysis

Why choose Nondirectional?
- If you have <10ng of total RNA
What is the difference between Directional and Nondirectional?

Why choose Directional?
- More information
 - Which strand your RNA is being transcribed from
- More accurate count of genes in differential expression analysis

Why choose Nondirectional?
- If you have <10ng of total RNA
RNAseq Decision Tree

RNA Quality
RQN ≥ 7

- **polyA⁺ OK**
 - ≥ 10 ng total RNA
 - Directional (stranded) RNAseq
 - ≥ 10 ng

- ≤ 10 ng total RNA
 - Non-stranded or amplified RNAseq
 - <10 ng

- ≥ 100 ng total RNA
 - ≥ 100 ng total RNA
 - HMR rRNA⁻ (stranded) RNAseq
 - eukaryote

- ≤ 100 ng total RNA
 - Other rRNA⁻ (stranded) RNAseq
 -
 - eukaryote
 - bacteria/mix

PolyA⁺ RNAseq
RQN ≥ 7 and polyA⁺ OK

rRNA⁻ RNAseq
RQN < 7 or polyA⁺ not OK
Ribo Zero from illumina has been discontinued!
Ribo Zero from illumina has been discontinued!
Why choose Small RNA?

Analyzing microRNAs, siRNAs, piRNAs
- Selecting for 20-30nt small RNAs
- Minimum input of 100ng of cellular Total RNA
Why choose Small RNA?

Analyzing microRNAs, siRNAs, piRNAs
• Selecting for 20-30nt small RNAs
• Minimum input of 100ng of cellular Total RNA

* For RNA Extraction: make sure you use a method that keeps small RNA’s *
What is small RNA

- Type of ncRNA
- Small, 25-250NT's
- Involved in regulating translation of target RNA's
What is small RNA

- Type of ncRNA
- Small, 25-250NT's
- Involved in regulating translation of target RNA's
Small RNA Seq

- 3' Adaptor ligation, primer hyb
- 5' Adaptor ligation
- cDNA synthesis
- PCR
- Index
- P7 Adaptor
- small RNA insert
- P5 Adaptor
Small RNA Seq

- 3' Adaptor ligation, primer hyb
- 5' Adaptor ligation
- cDNA synthesis
- PCR
- Index
- P7 Adaptor
- small RNA insert
- P5 Adaptor

Hydroxyl Group
Introduction to RNAseq
Transcriptional Regulation and Gene Expression

Mission: Develop and provide high quality, project-oriented genomics services to the Cornell research community.

Goal: Enable successful research, from funding to publication